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Abstract—As estimated by 1H NMR analysis, thermal isomerisation of the kinetic silylenolate derived from the ester (Z)-8a
proceeds with acceptable diastereo and facial selectivity, thence affording an acid having the required absolute configuration for
further elaboration to brassinosteroids. © 2002 Elsevier Science Ltd. All rights reserved.

Due to its activity as a plant-growth promoter and,
accordingly, to its potential use in agriculture, brassino-
lide 1a has given rise over the past 20 years to a
substantial research activity towards a better under-
standing of its biological activity and the development
of efficient ways to obtain this scarce material from
more available steroids.1 To date, however, no total
synthesis of either 1a or its biosynthetic precursor cas-
tasterone 1b has appeared.

As part of our continuing effort to synthesise brassino-
steroids,2 we have shown previously how a hydro-
phenanthrone featuring the A–B–C ring system of
the ketone 2 could be prepared by means of intramolec-
ular Diels–Alder reaction of a dienylsulfide (Scheme
1).2a

This result, coupled with those previously obtained in
the elaboration of compound 3 to the ketone 2 and thus
to brassinosteroids,1,2b led us accordingly to examine
the preparation of the nitrile 5, whose transformation

into the sulfide 4, a potential precursor of the ketone 2,
thus appeared feasible (Scheme 2).

In light of recent, related, results,3 free radical cyclisa-
tion of the iodide 6a could reasonably be considered as
a possible way to obtain 5. In the event, the only
challenging aspect of this plan appeared to be the
preparation of this iodide and thus of the acid (R,S)-7a,
from which it could derived by two one-carbon
homologations. This letter describes how this acid may
be obtained by Ireland–Claisen (IC) rearrangement of
the ester (Z)-8a, the conditions permitting elaboration
of this acid to the target hydrindane derivative 5 being
described in the accompanying letters.

As can be seen in Scheme 3, assuming that the planned
rearrangement would proceed according to the cur-
rently-accepted model4 and, moreover, that the
R1R2CH group of the Z and the E silylenolate (L=lig-
and; R1=Me, R2=CH2OTIPS) derived from E-8a and
Z-8a, respectively, would adopt the indicated confor-

Scheme 1.
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Scheme 2.

Scheme 3.

mation in each of the resulting four transition states
(TS), it could be anticipated that those achieved by the
E enolate of the Z ester (i.e. TS-3 and TS-4) would be
lower in energy as compared with those resulting from
the Z enolate of the E ester (i.e. TS-1 and TS-2) due to
the development of an unfavourable pseudo 1,3-diaxial
steric interaction in the latter two. Accordingly, genera-
tion of the kinetic (i.e. E) enolate derivative of Z-8a
would be required in order to generate the R,S (or the
S,R) configuration at the newly-formed stereogenic
centres.

More difficult to predict was the face selectivity with
which this IC rearrangement would proceed since the
TS-3 intermediate, leading to the desired (i.e. (R,S)-7a)
isomer appeared close in energy to TS-4.5

In order to assess the validity of this analysis and to
design the analytical tool for assessing the stereoselec-
tivity of these processes, we decided first to study the
fate of the silylenolates generated from the simpler
esters 8b and 8c. Examination of the literature revealed
that the diastereomeric acids (R,S/S,R)-7d and (R,R/
S,S)-7d, formed by IC rearrangement of the related
i-pentenoic acid esters 8d, could be clearly distinguished
in 1H NMR analysis;6 the signal displayed by the
vinylic hydrogen atom, designated by Hv in Scheme 3,

resonates at higher field for the R,R (res. S,S) isomer
than for the R,S (res. S,R) one in this series. It was
therefore of interest to verify that this dichotomy in
chemical shift was not related to the nature of the acyl
component of the starting ester since integration of the
relevant signals in the 1H NMR spectrum would have
allowed straightforward assessment of the diastereose-
lectivity of the rearrangement.

To this end, both the geranyl and the neryl propionates
E-7c and Z-7c were independently submitted to both
the ‘kinetic’ or ‘thermodynamic’ enolisation/silylation
sequence and, after a hydrolysis, the resulting acid
fractions were analysed by NMR.7 As can be seen
(Table 1), the signal displayed in the 1H NMR spec-
trum by Hv of the major isomer formed from either
E-8c or Z-8c under thermal and kinetic conditions,
respectively (entries 2 and 3) appears at lower field
compared with the minor product. On the basis of
previous observations with the corresponding i-pen-
tenoate (vide supra), and in keeping with our model
(Scheme 3; R1, R2=H), we assigned the S,R (res. R,S)
configuration to this product.

The validity of this assumption was demonstrated as
follows. The IC product obtained from E-8c under
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Table 1. Selectivity of the IC rearrangement of esters 8b–c

Entry Conditions7 (assumed enolate)Substrate Product, Rdt (%) �Hv (ppm) (major isomer) (R,S/S,R)-7/(R,R/S,S)-7

Kinetic (E) 7c, 571 5.68E-8c 1:4
Thermodynamic (Z) 7c, 33 5.892 19:1E-8c
Kinetic (E) 7c, 57Z-8c 5.893 4:1

Z-8c4 Thermodynamic (Z) 7c, 48 5.68 1:5
E-8b5 Kinetic (E) 7b, 77 5.77 1:4

Thermodynamic (Z) 7b, 55E-8b 6.076 3:2
Kinetic (E) 7b, 907 6.07Z-8b 46:1

thermodynamic conditions (entry 2) was esterified using
CH2N2 (Scheme 4). Chromatography of the resulting
ester mixture, followed by treatment with MCPBA of
the major methyl ester thus obtained gave 9 as a
mixture of two diastereomers, which was sequentially
reacted with periodic acid and NaBH4 to give 10a.
Conversion of 10a into its O-benzyl derivative 10b
followed by treatment with n-PrSLi in HMPT fur-
nished the acid 10c, which afforded a crystalline iodo-
lactone to which the structure 11 could unambiguously
be assigned by X-ray analysis.8

The i-valerates 8b were then submitted to the same IC
conditions, the resulting acid mixture in each case being
analysed by NMR (entries 5–7 of Table 1). In perfect
accord with the preceding results, the main component
formed from either E-8b or Z-8b under thermodynamic
and kinetic conditions displayed in the 1H NMR spec-
trum a signal at lower field (�Hv=6.07 ppm), as com-
pared with the value (�Hv=5.77 ppm) obtained for the
minor compound. As also anticipated from the model
(Scheme 3; R1=R2=Me), higher selectivity was
observed with the neryl ester under kinetic conditions
(entry 7). It can be concluded that whatever the level of
ramification (8c versus 8b), or unsaturation (8b versus
8d), of the acyl component of the geraneryl (res. neryl)
ester used, 1H NMR can be used to determine the
stereoselectivity of these IC rearrangements, with a

signal at lower field for the Hv proton being indicative
of the R,S (res. S,R) configuration.

Assuming that this would also apply to the IC product
formed from the ester Z-8a, its preparation was
achieved starting from the commercially-available
methyl ester of (R)-�-hydroxy-i-butyric acid (Scheme
5). Sequential treatment of this ester with tris-i-propy-
lsilyl triflate (TIPSTf), DIBA-H, tosyl chloride and
NaCN under standard conditions furnished the nitrile
12. Reduction of 12 using DIBA-H, and oxidation of
the aldehyde thus formed with sodium chlorite deliv-
ered the pure acid 13a. Stirring 13a with thionyl chlo-
ride then furnished the chloride 13b, which was
condensed with nerol in the presence of DMAP to
afford Z-8a.

IC rearrangement of this compound under ‘kinetic’
conditions resulted in the isolation of an acid fraction
whose NMR analysis indicated it was a 3/1/1 mixture
of isomers with, respectively, �Hv=6.04, 6.14 and 5.81
ppm in the 1H NMR spectrum. Esterification of this
product with diazomethane and chromatography on
silica gel of the resulting ester mixture (same isomeric
ratio, as established both by 1H NMR and GLC)
afforded a fraction enriched in the methyl ester of the
major acid, still containing, however, a small amount
(<10%) of that formed from the minor product (�Hv=
5.81).

Scheme 4. Reagents and conditions : 1. (i) CH2N2, ether; 0°C; (ii) chromatography on silica gel (hexane) (66%); (iii) MCPBA (1
equiv.), CH2Cl2; 0 to rt, 1 h (99%); 2. (i) H5IO6 (1 equiv.), THF; rt, 1 h; (ii) NaBH4 (3.6 equiv.), EtOH; 0°C to rt, 30 min (86%);
(iii) BnOC(NH)CCl3 (1 equiv.), camphorsulfonic acid (1 equiv.), CH2Cl2; rt, 2 h, then, in five portions, each 3 h, BnOC(NH)CCl3
(1 equiv.) (65%; from 9); 3. (i) n-PrSLi (1 equiv.), HMPA (2 ml/mmol); rt, 5 h (80%); (ii) 0.5 M aqueous NaHCO3 (6 ml/mmol),
I2 (1.5 equiv.) in 5 M aqueous KI; rt, 1 day, then partition in 0.25 M Na2S2O3/ether (97%).
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Scheme 5. Reagents and conditions : 1. (i) TIPSTf (1 equiv.), 2,6-lutidine (3 equiv.), CH2Cl2; 0°C to rt, 5 h; (ii) DIBAH (2.2 equiv.),
CH2Cl2; −78°C, 16 h; (iii) tosyl chloride (1.2 equiv.), pyridine (6 equiv.); 0–3°C overnight; (iv) NaCN (1.8 equiv.), DMSO; 80°C,
20 h; 2. (i) DIBA-H (1.2 equiv.), CH2Cl2; −78°C, 2 h; (ii) 30% H2O2 (1.1 equiv.), 4/1 acetonitrile/1 M KH2PO4 (aqueous), NaClO2

(1.4 equiv.); 0°C, 15 min; 3. SOCl2 (2 equiv.) DMF (two drops), ether; 0°C, 1 h, then evaporation, then nerol (1 equiv.), DMAP
(1 equiv.), ether; 0°C, 30 min (83%); 4. see Ref. 7; 5. CH2N2 (excess), ether; 0°C, 0.5 h, then chromatography (hexane/ether) (31%,
from Z-8a); 6. 1 M (in THF) TBAF (2 equiv.); rt, 3 h, then chromatography (9:1 hexane/ether) (96%).

That the major acid, with �Hv=6.04, was indeed the
desired isomer (i.e. (R,S)-7a), those with �Hv=6.14
and 5.81 being then, respectively, (S,R)-7a and (R,R (or
S,S))-7a, was simply established as follows.

Treatment of the preceding purified ester with TBAF in
THF afforded a 9/1 mixture of lactones displaying in
relevant NMR experiment a significant, indicated, NOE
correlation for the major constituent, which, as shown,
dismissed the structure 15. It thus follows that the main
lactone could only be 14 and not 15. Hence the major
IC product formed from Z-8a in kinetic conditions
was, as predicted, (R,S)-7a.9

In conclusion, besides a further confirmation of the
value of the model used for predicting the fate of these
IC rearrangements, the results presented in this letter
illustrate that 1H NMR analysis of the acids formed by
rearrangement of the silylenolates derived from geranyl
and neryl esters E-8 and Z-8 constitutes a particularly
convenient means for assessment of their structure.
Moreover, though not proceeding with a complete
stereoselectivity, this preparation of the acid (R,S)-7a
permitted us to obtain useful amounts of a crucial
intermediate of our planned synthesis of brassino-
steroids in a single step from readily accessible starting
compounds.
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The combined organic layers were extracted with 1N
NaOH (3×20 ml). The aqueous phases thus generated were
combined, acidified to pH 1 with 5N HCl, then back-
extracted with CH2Cl2 to afford, after drying (MgSO4) and
evaporation, the rearranged acid as a pale yellow oil.
Protocol for the ‘thermodynamic’ conditions : strictly identi-
cal to that described by Ireland in Ref. 4.
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exception of the C7 protons, omitted. Full matrix refine-
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(m, 1H), 5.7 (dd, J=17.5, 10.9 Hz, 1H). Excepted as
otherwise stated, 1H and 13C NMR at 200 and 50 MHz in
CDCl3, respectively. The results presented in this letter are
taken in part from the thesis dissertation of Olivier
Temmem (Strasbourg, December 2000).
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